Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The proteome of Populus nigra woody root: response to bending.

Identifieur interne : 002880 ( Main/Exploration ); précédent : 002879; suivant : 002881

The proteome of Populus nigra woody root: response to bending.

Auteurs : Dalila Trupiano [Italie] ; Mariapina Rocco ; Giovanni Renzone ; Andrea Scaloni ; Vincenzo Viscosi ; Donato Chiatante ; Gabriella S. Scippa

Source :

RBID : pubmed:22437664

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress.

METHODS

To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot.

KEY RESULTS

The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses.

CONCLUSIONS

Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls.


DOI: 10.1093/aob/mcs040
PubMed: 22437664
PubMed Central: PMC3394638


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The proteome of Populus nigra woody root: response to bending.</title>
<author>
<name sortKey="Trupiano, Dalila" sort="Trupiano, Dalila" uniqKey="Trupiano D" first="Dalila" last="Trupiano">Dalila Trupiano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze e Tecnologie per l'Ambiente e il Territorio, University of Molise, 86090 Pesche, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze e Tecnologie per l'Ambiente e il Territorio, University of Molise, 86090 Pesche</wicri:regionArea>
<wicri:noRegion>86090 Pesche</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rocco, Mariapina" sort="Rocco, Mariapina" uniqKey="Rocco M" first="Mariapina" last="Rocco">Mariapina Rocco</name>
</author>
<author>
<name sortKey="Renzone, Giovanni" sort="Renzone, Giovanni" uniqKey="Renzone G" first="Giovanni" last="Renzone">Giovanni Renzone</name>
</author>
<author>
<name sortKey="Scaloni, Andrea" sort="Scaloni, Andrea" uniqKey="Scaloni A" first="Andrea" last="Scaloni">Andrea Scaloni</name>
</author>
<author>
<name sortKey="Viscosi, Vincenzo" sort="Viscosi, Vincenzo" uniqKey="Viscosi V" first="Vincenzo" last="Viscosi">Vincenzo Viscosi</name>
</author>
<author>
<name sortKey="Chiatante, Donato" sort="Chiatante, Donato" uniqKey="Chiatante D" first="Donato" last="Chiatante">Donato Chiatante</name>
</author>
<author>
<name sortKey="Scippa, Gabriella S" sort="Scippa, Gabriella S" uniqKey="Scippa G" first="Gabriella S" last="Scippa">Gabriella S. Scippa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22437664</idno>
<idno type="pmid">22437664</idno>
<idno type="doi">10.1093/aob/mcs040</idno>
<idno type="pmc">PMC3394638</idno>
<idno type="wicri:Area/Main/Corpus">002B03</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B03</idno>
<idno type="wicri:Area/Main/Curation">002B03</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B03</idno>
<idno type="wicri:Area/Main/Exploration">002B03</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The proteome of Populus nigra woody root: response to bending.</title>
<author>
<name sortKey="Trupiano, Dalila" sort="Trupiano, Dalila" uniqKey="Trupiano D" first="Dalila" last="Trupiano">Dalila Trupiano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze e Tecnologie per l'Ambiente e il Territorio, University of Molise, 86090 Pesche, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze e Tecnologie per l'Ambiente e il Territorio, University of Molise, 86090 Pesche</wicri:regionArea>
<wicri:noRegion>86090 Pesche</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rocco, Mariapina" sort="Rocco, Mariapina" uniqKey="Rocco M" first="Mariapina" last="Rocco">Mariapina Rocco</name>
</author>
<author>
<name sortKey="Renzone, Giovanni" sort="Renzone, Giovanni" uniqKey="Renzone G" first="Giovanni" last="Renzone">Giovanni Renzone</name>
</author>
<author>
<name sortKey="Scaloni, Andrea" sort="Scaloni, Andrea" uniqKey="Scaloni A" first="Andrea" last="Scaloni">Andrea Scaloni</name>
</author>
<author>
<name sortKey="Viscosi, Vincenzo" sort="Viscosi, Vincenzo" uniqKey="Viscosi V" first="Vincenzo" last="Viscosi">Vincenzo Viscosi</name>
</author>
<author>
<name sortKey="Chiatante, Donato" sort="Chiatante, Donato" uniqKey="Chiatante D" first="Donato" last="Chiatante">Donato Chiatante</name>
</author>
<author>
<name sortKey="Scippa, Gabriella S" sort="Scippa, Gabriella S" uniqKey="Scippa G" first="Gabriella S" last="Scippa">Gabriella S. Scippa</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Gene-Environment Interaction (MeSH)</term>
<term>Plant Proteins (isolation & purification)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Proteomics (MeSH)</term>
<term>Spatio-Temporal Analysis (MeSH)</term>
<term>Stress, Mechanical (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Analyse spatio-temporelle (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Contrainte mécanique (MeSH)</term>
<term>Interaction entre gènes et environnement (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (isolement et purification)</term>
<term>Protéomique (MeSH)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Chromosome Mapping</term>
<term>Gene-Environment Interaction</term>
<term>Proteomics</term>
<term>Spatio-Temporal Analysis</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Analyse spatio-temporelle</term>
<term>Cartographie chromosomique</term>
<term>Contrainte mécanique</term>
<term>Interaction entre gènes et environnement</term>
<term>Protéomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22437664</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>12</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>The proteome of Populus nigra woody root: response to bending.</ArticleTitle>
<Pagination>
<MedlinePgn>415-32</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcs040</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Trupiano</LastName>
<ForeName>Dalila</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze e Tecnologie per l'Ambiente e il Territorio, University of Molise, 86090 Pesche, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rocco</LastName>
<ForeName>Mariapina</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Renzone</LastName>
<ForeName>Giovanni</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scaloni</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Viscosi</LastName>
<ForeName>Vincenzo</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiatante</LastName>
<ForeName>Donato</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scippa</LastName>
<ForeName>Gabriella S</ForeName>
<Initials>GS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059647" MajorTopicYN="N">Gene-Environment Interaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062211" MajorTopicYN="N">Spatio-Temporal Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="Y">Stress, Mechanical</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22437664</ArticleId>
<ArticleId IdType="pii">mcs040</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcs040</ArticleId>
<ArticleId IdType="pmc">PMC3394638</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 1995 Oct;7(10):1555-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7580251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:545-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(6):1108-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17319845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2011 Aug 12;74(8):1301-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21329772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Jun;6(11):3455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16622838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Jul;66(13):1519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1241-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2790-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2008 Jun;8(12):2514-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18563750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Apr;53(370):891-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):557-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Feb;220(4):621-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15368128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 Sep;7(9):1915-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9761472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Jan;95(2):351-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15567806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 1999 Mar;50(6):953-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10385993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Apr;5(6):1574-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 May;70(7):856-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Nov;30(11):1415-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jul;72(10):1219-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21353265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Nov;6(11):1553-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7827491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2003 Jun;118(2):221-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14552351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Apr;97(4):535-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(3):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Nov 15;14(22):5626-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1418-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Dec;9(12):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):1055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Dec 25;782(1-2):227-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12458009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 May;97(5):857-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16352708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Dec;13(12):2609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Jan;8(1):400-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19072159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Jul;70(1):117-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1998 Aug;19(11):1920-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9740052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2007 Sep;94(9):1506-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2012 Sep;146(1):39-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22339039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Feb 9;60(3):357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2302732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Dec;6(24):6509-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1855-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Mar;210(4):589-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10787052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2003 Dec;3(12):2379-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2000 Nov;127(22):4971-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11044410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Feb;41(2):177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10795312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Dec 1;14(23):3024-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jan 29;391(6666):485-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Dec;53(379):2431-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jun;136(2):193-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2000 Jul 24;327(3):293-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10945678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Feb;165(2):373-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Nov 8;298(5596):1238-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12424380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Jan;3(1):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18752686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Mar;30(6):1233-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8704132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18818-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Sep;5(14):3731-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16127725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jun;65(11):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15276456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gravit Space Biol Bull. 2005 Jun;18(2):113-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16044633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):533-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 May;8(5):2341-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1970 Apr;45(4):390-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Oct;56(420):2661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2011 May 1;74(5):607-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21315198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(2):175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Biol Lett. 2006;11(4):536-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16983453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Mar;28(3):321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Nov;47(11):1555-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17056619</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chiatante, Donato" sort="Chiatante, Donato" uniqKey="Chiatante D" first="Donato" last="Chiatante">Donato Chiatante</name>
<name sortKey="Renzone, Giovanni" sort="Renzone, Giovanni" uniqKey="Renzone G" first="Giovanni" last="Renzone">Giovanni Renzone</name>
<name sortKey="Rocco, Mariapina" sort="Rocco, Mariapina" uniqKey="Rocco M" first="Mariapina" last="Rocco">Mariapina Rocco</name>
<name sortKey="Scaloni, Andrea" sort="Scaloni, Andrea" uniqKey="Scaloni A" first="Andrea" last="Scaloni">Andrea Scaloni</name>
<name sortKey="Scippa, Gabriella S" sort="Scippa, Gabriella S" uniqKey="Scippa G" first="Gabriella S" last="Scippa">Gabriella S. Scippa</name>
<name sortKey="Viscosi, Vincenzo" sort="Viscosi, Vincenzo" uniqKey="Viscosi V" first="Vincenzo" last="Viscosi">Vincenzo Viscosi</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Trupiano, Dalila" sort="Trupiano, Dalila" uniqKey="Trupiano D" first="Dalila" last="Trupiano">Dalila Trupiano</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002880 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002880 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22437664
   |texte=   The proteome of Populus nigra woody root: response to bending.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22437664" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020